Gating Transitions in Bacterial Ion Channels Measured at 3 μs Resolution
نویسندگان
چکیده
Ion channels of high conductance (>200 pS) are widespread among prokaryotes and eukaryotes. Two examples, the Escherichia coli mechanosensitive ion channels Ec-MscS and Ec-MscL, pass currents of 125-300 pA. To resolve temporal details of conductance transitions, a patch-clamp setup was optimized for low-noise recordings at a time resolution of 3 microns (10-20 times faster than usual). Analyses of the high-resolution recordings confirm that Ec-MscL visits many subconductance states and show that most of the intersubstate transitions occur more slowly than the effective resolution of 3 micros. There is a clear trend toward longer transition times for the larger transitions. In Ec-MscS recordings, the majority of the observed full conductance transitions are also composite. We detected a short-lived (approximately 20 microns) Ec-MscS substate at 2/3 of full conductance; transitions between 2/3 and full conductance did not show fine structure and had a time course limited by the achieved resolution. Opening and closing transitions in MscS are symmetrical and are not preceded or followed by smaller, rapid currents ("anticipations" or "regrets"). Compared with other, lower-conductance channels, these measurements may detect unusually early states in the transitions from fully closed to fully open. Increased temporal resolution at the single-molecule level reveals that some elementary steps of structural transitions are composite and follow several alternative pathways, while others still escape resolution. High-bandwidth, low-noise single-channel measurements may provide details about state transitions in other high-conductance channels; and similar procedures may also be applied to channel- and nanopore-based single-molecule DNA measurements.
منابع مشابه
Un-gating and allosteric modulation of a pentameric ligand-gated ion channel captured by molecular dynamics
Pentameric ligand-gated ion channels (pLGICs) mediate intercellular communication at synapses through the opening of an ion pore in response to the binding of a neurotransmitter. Despite the increasing availability of high-resolution structures of pLGICs, a detailed understanding of the functional isomerization from closed to open (gating) and back is currently missing. Here, we provide the fir...
متن کاملGating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملA Gating Mechanism of the Serotonin 5-HT3 Receptor.
Our recently solved high-resolution structure of the serotonin 5-HT3 receptor (5-HT3R) delivered the first detailed structural insights for a mammalian pentameric ligand-gated ion channel. Based on this structure, we here performed a total of 2.8-μs all-atom molecular dynamics simulations to unravel at atomic detail how neurotransmitter binding on the extracellular domain induces sequential con...
متن کاملIon Channels: Open at Last
Previous X-ray studies of have focused on the closed state of the potassium channel. Now the structure of a calcium-activated bacterial potassium channel has revealed the nature of the channel's open state. This provides a first view at high resolution of ion channel gating.
متن کاملVoltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.
The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 124 شماره
صفحات -
تاریخ انتشار 2004